Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish
نویسندگان
چکیده
Dysregulated phosphatidylinositol (PI) signaling has been implicated in human gastrointestinal (GI) malignancies and inflammatory states, underlining the need to study pathophysiological roles of PI in an in vivo genetic model. Here, we study the significance of PI in GI pathophysiology using the zebrafish mutant cdipt(hi559), which lacks PI synthesis, and unravel a crucial role of PI in intestinal mucosal integrity and inflammation. The cdipt(hi559) mutants exhibit abnormal villous architecture and disorganized proliferation of intestinal epithelial cells (IECs), with pathologies reminiscent of inflammatory bowel disease (IBD), including apoptosis of goblet cells, abnormal mucosecretion, bacterial overgrowth and leukocyte infiltration. The mutant IECs exhibit vacuolation, microvillus atrophy and impaired proliferation. The cdipt(hi559) gene expression profile shows enrichment of acute phase response signaling, and the endoplasmic reticulum (ER) stress factors hspa5 and xbp1 are robustly activated in the mutant GI tissue. Temporal electron micrographic analyses reveal that PI-deficient IECs undergo sequential ER-Golgi disruption, mitochondrial depletion, macroautophagy and cell death, consistent with chronic ER-stress-mediated cytopathology. Furthermore, pharmacological induction of ER stress by inhibiting protein glycosylation or PI synthase inhibition in leukocyte-specific reporter lines replicates the cdipt(hi559) inflammatory phenotype, suggesting a fundamental role of PI metabolism and ER stress in mucosal inflammation. Antibiotics and anti-inflammatory drugs resolved the inflammation, but not the autophagic necroapoptosis of IECs, suggesting that bacterial overgrowth can exacerbate ER stress pathology, whereas persistent ER stress is sufficient to trigger inflammation. Interestingly, the intestinal phenotype was partially alleviated by chemical chaperones, suggesting their therapeutic potential. Using zebrafish genetic and pharmacological models, this study demonstrates a newly identified link between intracellular PI signaling and ER-stress-mediated mucosal inflammation. The zebrafish cdipt mutants provide a powerful tool for dissecting the fundamental mechanisms of ER-stress-mediated human GI diseases and a platform to develop molecularly targeted therapies.
منابع مشابه
Endoplasmic reticulum stress regulates inflammation in adipocyte of obese rats via toll-like receptors 4 signaling
Objective(s): To explore whether endoplasmic reticulum (ER) stress regulates inflammation in adipose tissue of obese rats via TLR4 signaling. Materials and Methods: Sprague Dawley rats were randomly divided into four groups, and body weight, food intake, and free fatty acids (FFA) were measured. Real-time PCR and Western blot were used to determine mRNA or protein expression of TLR4, TRAF6, IKK...
متن کاملHow Bacteria-Induced Apoptosis of Intestinal Epithelial Cells Contributes to Mucosal Inflammation
The life cycle of an intestinal epithelial cell is terminated by apoptosis and/or cell shedding. Apoptotic deletion of epithelial cells from the intact intestinal mucosa is not accompanied by detectable inflammatory response or loss of barrier function. But increased permeability of the epithelial barrier and increased apoptotic rates of epithelial cells have been reported for patients sufferin...
متن کاملGlafenine-induced intestinal injury in zebrafish is ameliorated by μ-opioid signaling via enhancement of Atf6-dependent cellular stress responses
Beside their analgesic properties, opiates exert beneficial effects on the intestinal wound healing response. In this study, we investigated the role of μ-opioid receptor (MOR) signaling on the unfolded protein response (UPR) using a novel zebrafish model of NSAID-induced intestinal injury. The NSAID glafenine was administered to zebrafish larvae at 5 days post-fertilization (dpf) for up to 24 ...
متن کاملER stress and the unfolded protein response in intestinal inflammation.
Endoplasmic reticulum (ER) stress is a phenomenon that occurs when excessive protein misfolding occurs during biosynthesis. ER stress triggers a series of signaling and transcriptional events known as the unfolded protein response (UPR). The UPR attempts to restore homeostasis in the ER but if unsuccessful can trigger apoptosis in the stressed cells and local inflammation. Intestinal secretory ...
متن کاملHigh Fat Diets Induce Colonic Epithelial Cell Stress and Inflammation that is Reversed by IL-22
Prolonged high fat diets (HFD) induce low-grade chronic intestinal inflammation in mice, and diets high in saturated fat are a risk factor for the development of human inflammatory bowel diseases. We hypothesized that HFD-induced endoplasmic reticulum (ER)/oxidative stress occur in intestinal secretory goblet cells, triggering inflammatory signaling and reducing synthesis/secretion of proteins ...
متن کامل